Hydrological evidence and causes of seasonal low water levels in a large river-lake system: Poyang Lake, China

Author:

Yao Jing1,Zhang Qi12,Li Yunliang1,Li Mengfan1

Affiliation:

1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China

2. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China

Abstract

Seasonal variations in local catchments and connected rivers lead to complex hydrological behaviours in river-lake systems. Poyang Lake is a seasonally dynamic lake with frequent low levels in spring and autumn, which may be triggered by the local catchment and Yangtze River. Based on two typical years, a hydrodynamic model combined with long term hydrological observations was applied to quantify the spatiotemporal impacts of the local catchment and Yangtze River on spring and autumn low water levels in Poyang Lake. As a first attempt, this study explored the spatial differences of the two influences. Simulation results showed that the contributions of the catchment and the Yangtze River were approximately 70% and 30% in spring 1963, and 5% and 95% in autumn 2006, respectively. The area of catchment influence was mainly distributed in channels and southern floodplains, with relatively uniform water levels. The area impacted by the Yangtze River mainly spanned from the northern portion of the waterway to the central lake, with strong spatial variability. This study focused on two typical years; however, the results can be extended to explain common hydrological phenomena and improve future strategies of water resource management in this river-lake system.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3