Projection of Meteorological Dryness/Wetness Evolution Based on Multi-Model Scenarios in Poyang Lake Basin, China

Author:

Deng Yueping1,Jiang Wenyu2,Zhang Tianyu3,Chen Jing4,Wu Zhi4,Liu Yuanqing2,Tao Xinyue2,Liu Bo2

Affiliation:

1. Poyang Lake Water Resources Monitoring Center, Nanchang 330038, China

2. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

3. China Meteorological Administration Economic Transformation of Climate Resources Key Laboratory, Chongqing Climate Center, Chongqing 401147, China

4. Jiangxi Hydrology Monitoring Center, Nanchang 330002, China

Abstract

Based on the projections of three shared socioeconomic pathways (SSPs) scenarios of three climate models of CMIP6, this study analyzed the standardized precipitation evapotranspiration index (SPEI) to understand the future meteorological dryness/wetness changes in the Poyang Lake basin (PLB) from 2021 to 2100. The effect of temperature change on the dryness and wetness variation was explored by comparing the trends of SPEI and standardized precipitation index (SPI) at multiple-time scales and different SSPs scenarios. The results indicate that the frequency of drought events may increase by 1.1~3.8% than the historical period in the three scenarios, and they may be higher than that of wetness events in the future of this century. Cumulative months of drought events are higher in most decades than the wetness events, and especially in the 2090s. A total of 43 months may suffer drought events in the 2090s under the SSP585 scenario, which is more than twice the wetness events. With the enhanced concentration of greenhouse gas (GHG) emissions, both the frequency of droughts and the proportion of extreme droughts show a significant increasing trend at 99% confidence in PLB. The spatial distribution of net precipitation is generally in the southwest–northeast pattern, yet it is still in different values in most scenarios; thus, the uncertainty of dryness/wetness spatial conditions should be considered. The SPI detects more wetness events and a more intensive wetting trend, while the SPEI shows the opposite. The difference between SPI and SPEI gradually increases with GHG emission concentration, and may even lead to contrary conclusion in the last two decades at a 48-month scale under the SSP245 and 585 scenarios, indicating the unneglectable impact of increasing temperature and evapotranspiration on the dryness/wetness conditions in the future. The research results can help to predict the evolution pattern of dry and wet occurrence in the PLB in the future and promote flood/drought control and disaster mitigation.

Funder

Water Conservancy Science and Technology Project of Jiangxi Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3