Applicability of a physically based soil water model (SWMOD) in design flood estimation in eastern Australia

Author:

Loveridge Melanie1,Rahman Ataur1,Hill Peter2

Affiliation:

1. School of Computing, Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia

2. Hydrology and Risk Consulting, Melbourne, Victoria, Australia

Abstract

Abstract Event-based rainfall–runoff models are useful tools for hydrologic design. Of the many loss models, the ‘initial loss-continuing loss’ model is widely adopted in practice. Some of the key limitations with these types of loss models include the arbitrary selection of initial moisture (IM) conditions and lack of physically meaningful parameters. This paper investigates the applicability of a physically based soil water balance model (SWMOD) with distributed IM conditions for flood modelling. Four catchments from the east coast of New South Wales, Australia, are modelled. The IM content in SWMOD represents the antecedent moisture condition. A quasi-Monte Carlo simulation framework is adopted, where the IM is stochastically varied according to a lognormal probability distribution. In calibration, it is found that the adopted modelling framework is able to simulate the majority of the observed flood hydrographs with a higher degree of accuracy; however, in a design context, when compared to the results of conventional flood frequency analysis, discrepancies are noted for a range of annual exceedance probabilities. The quasi-Monte Carlo simulation framework proved to be useful in assessing the effect of the IM content on design flood estimates.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference49 articles.

1. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model;Journal of Hydrology,2003

2. Revisiting the design flood problem,2011

3. How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches;Hydrology and Earth System Sciences,2009

4. Continuous simulation for design flood estimation – a review;Environmental Modelling and Software,2003

5. Benchmarking a new design flood estimation system;Australian Journal of Water Resources,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3