Challenges in Quantifying Losses in a Partly Urbanised Catchment: A South Australian Case Study

Author:

Ratnayake Dinesh C.ORCID,Hewa Guna A.ORCID,Kemp David J.ORCID

Abstract

Quantifying hydrological losses in a catchment is crucial for developing an effective flood forecasting system and estimating design floods. This can be a complicated and challenging task when the catchment is urbanised as the interaction of pervious and impervious (both directly connected and indirectly connected) areas makes responses to rainfall hard to predict. This paper presents the challenges faced in estimating initial losses (IL) and proportional losses (PL) of the partly urbanised Brownhill Creek catchment in South Australia. The loss components were calculated for 57 runoff generating rainfall events using the non-parametric IL-PL method and parametric method based on two runoff routing models, Runoff Routing Burroughs (RORB) and Rainfall-Runoff Routing (RRR). The analysis showed that the RORB model provided the most representative median IL and PL for the rural portion of the study area as 9 mm and 0.81, respectively. However, none of the methods can provide a reliable loss value for the urban portion because there is no runoff contribution from unconnected areas for each event. However, the estimated non-parametric IL of 1.37 mm can be considered as IL of EIA of the urban portion. Several challenges were identified in the loss estimation process, mainly when selecting appropriate storm events, collecting data with the available temporal resolution, extracting baseflow, and determining the main-stream transmission losses, which reduced the urban flow by 5.7%. The effect of hydrograph shape in non-parametric loss estimation and how combined runoff from the effective impervious area and unconnected (combined indirectly connected impervious and pervious) areas affects the loss estimation process using the RORB and RRR models are further discussed. We also demonstrate the importance of identifying the catchment specific conditions appropriately when quantifying baseflow and runoff of selected events for loss estimation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference73 articles.

1. How Much Rainfall Becomes Runoff? Loss Modelling for Flood Estimation;Hill,1998

2. The hydrological behaviour of urban streets: long-term observations and modelling of runoff losses and rainfall-runoff transformation

3. Australian rainfall and runoff revision project 6: Loss models for catchment simulation: Phase 4 analysis of rural catchments;Hill;Aust. Barton ACT,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3