Coupling of the coagulation/flocculation and the anodic oxidation processes for the treatment of textile wastewater

Author:

Bouznif Sourour1,Bali Mahmoud1

Affiliation:

1. Higher Institute of Water Sciences and Techniques, University of Gabès, Gabès, Tunisia

Abstract

Abstract The increased demand for textile products leads to an increase in the quantity of wastewater discharged. It becomes indeed one of the most critical health and environmental problems in the world. The main challenge, therefore, is to develop innovative techniques for treating this wastewater with low production costs and better efficiency. The major objective of this work was to investigate the efficiency of the coupling of the coagulation–flocculation and the anodic oxidation processes on the platinum electrode in the removal of organic, mineral, and microbial pollution contained in textile effluents. A series of experiments is carried out on samples prepared in the laboratory, in which the textile effluent was mixed with a secondary effluent from an urban wastewater treatment plant. The treatment consists of two steps: a coagulation–flocculation process using aluminum salts as a coagulant and an anodic oxidation on the platinum electrode using photovoltaic panels for the production of electric current. The treatment at optimized conditions reveals that the coupling of the two processes made it possible to achieve satisfactory results. The abatement rates were 95.97% for the turbidity, 90% for COD, 100% for BOD, 100% for , 53.6% for , and 100% for . The coupling of the two processes ensured the complete elimination of fecal germs. Thanks to the satisfactory results, the obtained permeate can be reused in the dyeing process in the textile industry.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3