Rapid adsorptive removal of eosin yellow and methyl orange using zeolite Y

Author:

Adeoye John Busayo,Balogun David Ololade,Etemire Oghenefejiro Jeshurun,Ezeh Princewill Nnaneme,Tan Yie Hua,Mubarak Nabisab Mujawar

Abstract

AbstractIn this study, zeolite Y was synthesised using a novel method. The heat generated from the reaction of H2SO4 with metakaolin was used as a heat source instead of applying external heat for the dealuminated process. The synthesised zeolite Y produced was analysed by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS) and Brunauer–Emmett–Teller (BET). Zeolite Y synthesis was mesoporous because of its pore diameter (30.53 nm), as shown in the BET results. Surface area and pore size decrease after adsorption due to dye deposition on the adsorbent’s surface. FTIR has bonds like O–H, C–H, –CH3, and –COOH responsible for adsorption. The maximum adsorption capacity of eosin yellow (EY) and methyl orange (MO) on to zeolite Y by the Langmuir isotherm was 52.91 mg/g and 20.62 mg/g respectively, at pH 2.5 and 8 for EY and MO dye. The batch adsorption studies were conducted, and the influence of different parameters (i.e., adsorbent dose, adsorption time, initial dye concentration, pH and temperature) was investigated. Experimental data were analysed by two linear model equations (Langmuir and Freundlich isotherms), and it was found that the Langmuir isotherm model best describes the adsorption data for methyl orange and Freundlich isotherm for eosin yellow, respectively. Adsorption rate constants were determined using linear pseudo-first-order and pseudo-second-order. The results showed that MO and EY dye adsorption onto zeolite Y followed a pseudo-second-order kinetic model. Thermodynamic studies show that adsorption was an exothermic reaction (enthalpy < 0) and feasible ($$(Gibbs free energy)<0$$ ( G i b b s f r e e e n e r g y ) < 0 ) at various temperatures under investigation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3