GTAR: a new ensemble evolutionary autoregressive approach to model dissolved organic carbon

Author:

Danandeh Mehr Ali12ORCID,Marttila Hannu3,Haghighi Ali Torabi3,Croghan Danny3,Fathollahzadeh Attar Nasrin4

Affiliation:

1. a Civil Engineering Department, Antalya Bilim University, Antalya, Turkey

2. b Faculty of Information Technology, Middle East University, Amman 11831, Jordan

3. c Water, Energy and Environmental Engineering Research Unit, University of Oulu, FI 90014, Oulu, Finland

4. d Department of Statistical Sciences, University of Padova, Via Cesare Battisti, Padova 35121, Italy

Abstract

AbstractThis article explores the forecasting capabilities of three classic linear and nonlinear autoregressive modeling techniques and proposes a new ensemble evolutionary time series approach to model and forecast daily dynamics in stream dissolved organic carbon (DOC). The model used data from the Oulankajoki River basin, a boreal catchment in Northern Finland. The models that were evolved used both accuracy and parsimony measures including autoregressive (AR), vector autoregressive (VAR), and self-exciting threshold autoregressive (SETAR). The new method, called genetic-based SETAR (GTAR), evolved through the integration of state-of-the-art genetic programming with SETAR. To develop the models, high-resolution DOC concentration and daily streamflow (as the external input for VAR) were measured at the same gauging station throughout the ice free season. The results showed that all the models characterize the DOC dynamics with an acceptable 1-day-ahead forecasting accuracy. Use of the streamflow time series as an exogenous variable did not increase the predictive accuracy of AR models. Moreover, the hybrid GTAR provided the best accuracy for the holdout testing data and proved to be a suitable approach for predicting DOC in boreal conditions.

Funder

Academy of Finland

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3