A new evolutionary time series model for streamflow forecasting in boreal lake-river systems

Author:

Danandeh Mehr AliORCID,Ghadimi Sahand,Marttila Hannu,Torabi Haghighi Ali

Abstract

AbstractGenetic programming (GP) is an evolutionary regression method that has received considerable interest to model hydro-environmental phenomena recently. Considering the sparseness of hydro-meteorological stations on northern areas, this study investigates the benefits and downfalls of univariate streamflow modeling at high latitudes using GP and seasonal autoregressive integrated moving average (SARIMA). Furthermore, a new evolutionary time series model, called GP-SARIMA, is introduced to enhance streamflow forecasting accuracy at long-term horizons in a lake-river system. The paper includes testing the new model for one-step-ahead forecasts of daily mean, weekly mean, and monthly mean streamflow in the headwaters of the Oulujoki River, Finland. The results showed that a combination of correlogram and average mutual information (AMI) analysis might yield in the selection of the optimum lags that are needed to be used as the predictors of streamflow models. With Nash-Sutcliffe efficiency values of more than 99%, both GP and SARIMA models exhibited good performance for daily streamflow prediction. However, they were not able to precisely model the intramonthly snow water equivalent in the long-term forecast. The proposed ensemble model, which integrates the best GP and SARIMA models with the most efficient predictor, may eliminate one-fourth of root mean squared errors of standalone models. The GP-SARIMA also showed up to three times improvement in the accuracy of the standalone models based on the Nash-Sutcliff efficiency measure.

Funder

academy of finland

maa_ ja vesitekniikan tuki ry

University of Oulu including Oulu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3