Water quality reliability based on an improved entropy in a water distribution system

Author:

Wang Yumin1ORCID,Zhu Jianguo2ORCID,Zhu Guangcan1

Affiliation:

1. a School of Energy and Environment, Southeast University, #2 Sipailou Street, Nanjing City, Jiangsu Province 210096, China

2. b Jiangsu Institute of Urban Planning and Design, Nanjing City, Jiangsu Province 210019, China

Abstract

Abstract In this paper, information entropy was proposed to measure water quality reliability in a water distribution system (WDS), which had been applied to evaluate hydraulic reliability in the WDS. In the water quality reliability evaluation, residual chlorine is a representative of water quality, and a first-order decay model was usually adopted. The water quality reliability (R) based on water quality entropy (WQE) and improved water quality reliability (Rd) based on improved water quality entropy (IWQE) were proposed and compared for three networks. The method was developed based on the EPANET toolkit and MATLAB environment. The results indicated that flow entropy (FE) is strongly related to WQE, and improved flow entropy (IFE) is also strongly related to IWQE. In addition, Rd can reflect the effect of pipe velocity, whereas R can only reflect the effects of pipe flow and the WDS layout. The novelty of this paper is to develop the entropy with consideration of the pipe velocity to measure water quality liability as a surrogate index, which can reduce the calculation load and can be applied to a nonlinear system. The proposed water quality reliability evaluation method based on information entropy can help design, analyze, and improve the water quality in the WDS.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3