Uncertainty analysis of water quality in water distribution system

Author:

Xiong Xiaolu1,Wang Yumin1

Affiliation:

1. 1 School of Energy and Environment, Southeast University, No. 2 Sipailou, Nanjing, Jiangsu Province 210096, China

Abstract

Abstract Water quality simulation is affected by uncertain parameters such as pipe roughness coefficients, chlorine bulk decay coefficients, and chlorine wall decay coefficients, which are usually considered to be fuzzy variables. The minimum and maximum nodal chlorine concentrations and water ages at each α-cut level were obtained by the genetic algorithm (GA) based on EPANET hydraulic and water quality simulation toolkit. The fuzziness of nodal chlorine concentrations and water ages were measured using the fuzziness measure (FM) proposed in this paper. The method was applied to four networks to analyze the fuzziness of nodal chlorine concentrations and water ages. The results indicated that the distribution of nodal chlorine concentrations does not follow typical trapezoid distribution, while the distribution of nodal water ages follows typical trapezoid distribution. In addition, the chlorine concentration and water ages of nodes farther from the source are affected by uncertain parameters to a greater extent. The greater demands of nodes lead to less effects of uncertain parameters on chlorine concentration, and greater effects of uncertain parameters on water ages. This study would help in analyzing the fuzziness of hydraulic and water quality simulation results in WDS under uncertain conditions.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Reference22 articles.

1. Pressure and flow uncertainty in water systems;Journal of Water Resources Planning and Management,1989

2. Optimal design of water distribution networks for fuzzy demands;Civil Engineering and Environmental Systems,2007

3. Fuzzy approach in the uncertainty analysis of the water distribution network of Becej;Civil Engineering and Environmental Systems,2006

4. Comparison among resilience and entropy index in the optimal rehabilitation of water distribution networks under limited-budgets;Water Resources Management,2018

5. State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management;Journal of Water Supply: Research and Technology – AQUA,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3