Adaptive operation of a reservoir in climate change condition: a case study of Maroon Dam in Iran

Author:

Mirmehdi Mostafa1,Shourian Mojtaba2ORCID,Sharafati Ahmad1

Affiliation:

1. a Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. b Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

Abstract The purpose of this research is to investigate the climate change impacts in Maroon Basin, Iran. To investigate the impacts of climate change on rainfall, temperature, and inflow in Maroon Dam, a simulation of four general circulation models (GCMs) was done in three future periods 2021–2040, 2041–2060, and 2061–2080. The results showed that the projected increased temperature would significantly reduce the runoff in the basin, despite the projected increase in rainfall. The most significant decrease of the average inflow to the Maroon Dam Reservoir in the near future of the RCP4.5 and RCP8.5 scenarios in March 24 and 26.4%, the middle future in March 25.4 and 29%, and the far future in March 27 and 30.6%, respectively, is predicted. Also, the MODSIM model simulation results showed that the Maroon Dam Reservoir would face a water resources shortage in the future to provide maximum demands. The average water supply reliability in climate change scenarios showed that the maximum water supply of 85% in the period 2021–2040 and the minimum of 80.4% in 2061–2080 would occur in the RCP4.5 and RCP8.5 scenarios, respectively.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climate change impact on crop stress and food security in a semi-arid river basin;AQUA — Water Infrastructure, Ecosystems and Society;2023-11-27

2. Self-adaptive metaheuristic optimization technique for multi-objective reservoir operation;AQUA — Water Infrastructure, Ecosystems and Society;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3