Self-adaptive metaheuristic optimization technique for multi-objective reservoir operation

Author:

Kumar Vijendra1ORCID,Sharma Kul Vaibhav1,Yadav S. M2,Deshmukh Arpan3

Affiliation:

1. a Department of Civil Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India

2. b Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India

3. c Department of Civil Engineering, G H Raisoni College of Engineering and Management, Pune, Maharashtra, India

Abstract

Abstract Multi-objective reservoir operation presents a number of critical challenges that must be overcome for efficient management of water resources. The inherent contradiction between several goals, such as satisfying irrigation demand and maximizing hydropower generation, is one of the major issues. Trade-offs and compromises must be carefully considered to balance these objectives. To solve this problem, a study was carried out to optimize the operation of multi-objective reservoirs with two primary goals: minimizing irrigation deficits and maximizing hydropower generation. This study employs the self-adaptive multipopulation multi-objective Jaya algorithm (SAMP-MOJA), an improved version of the Jaya algorithm, to construct an optimal Pareto Front utilizing an a priori approach. The performance of SAMP-MOJA is compared to that of other algorithms such as multi-objective particle swarm optimization, multi-objective invasive weed optimization, and multi-objective Jaya algorithm. The results of this study demonstrate that the hydropower generated by the developed model surpasses 80% of the actual generation. The study's findings will aid in designing the most effective Pareto front possible.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3