Wind effects on retention time in highway ponds

Author:

Bentzen T. R.1,Larsen T.1,Rasmussen M. R.1

Affiliation:

1. Department of Civil Engineering, Aalborg University, Soil & Water Sohngaardsholmsvej 57, 9000 Aalborg, Denmark

Abstract

The paper presents results from an experimental and numerical study of wind-induced flows and transportation patterns in highway wet detention ponds. The study presented here is part of a general investigation on road runoff and pollution in respect to wet detention ponds. The objective is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress with the situation of a “real” spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non-uniform wind field distributions are not significant to this study.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stratification and its consequences in two constructed urban stormwater wetlands;Science of The Total Environment;2023-05

2. Buoyant microplastics in freshwater sediments – How do they get there?;Science of The Total Environment;2023-02

3. Field observations of stratification in stormwater wet ponds;Journal of Environmental Management;2022-11

4. NUMERICAL INVESTIGATION ON INHOMOGENEOUS WIND AND ITS EFFECTS TO MASS TRANSPORT;Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering);2022

5. Field Observations of Stratification in Stormwater Wet Ponds;SSRN Electronic Journal;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3