Coupling support vector machine and the irrigation water quality index to assess groundwater quality suitability for irrigation practices in the Tana sub-basin, Ethiopia

Author:

Berhanu Kibru Gedam1,Hatiye Samuel Dagalo2ORCID,Lohani Tarun Kumar3

Affiliation:

1. a Faculty of Water Resources and Irrigation Engineering, Arba Minch Water Technology Institute, Arba Minch University, Arba Minch, Ethiopia

2. b Faculty of Water Resources and Irrigation Engineering, Arba Minch Water Technology Institute, Water Resources Research Center, Arba Minch University, Arba Minch, Ethiopia

3. c Faculty of Hydraulic and Water Resources Engineering, Arba Minch Water Technology Institute, Arba Minch University, Arba Minch, Ethiopia

Abstract

AbstractLong-term and sustainable agricultural practices can be achieved through monitoring and evaluation of groundwater quality for irrigation operations. However, less attention was given to irrigation water quality in the Tana sub-basin, Ethiopia. The present study is aimed to assess the seasonal and spatial groundwater suitability for irrigation uses. The groundwater quality parameters measured in 40 samples in each dry and wet season were the pH, electrical conductivity (EC), Na+, Ca2+, Mg2+, K+, Fe2+, HCO3-, CO32-, Cl−, and NO3-. The groundwater suitability for irrigation was assessed using the irrigation water quality index (IWQI) and support vector machine (SVM). The results showed high and medium irrigation suitability classes in the dry and wet seasons. The proportion of groundwater samples in the medium irrigation suitability class in the dry and wet seasons, respectively, was 72.5 and 67.5%. The groundwater in the wet season is comparatively more suitable than that in the dry season, which is attributed to the leaching of accumulated salts during the wet season. To avoid a salinity threat, vigilance should be exercised when using groundwater during the dry seasons. The groundwater quality map developed here for irrigation may aid in locating better-quality groundwater sources for irrigation.

Funder

Arba Minch University

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3