Groundwater Quality Evaluation of Fractured Aquifers Using Machine Learning Models and Hydrogeochemical Approaches to Sustainable Water-Irrigation Security in Arid Climate (Central Tunisia)

Author:

Msaddek Mohamed Haythem1ORCID,Moumni Yahya12ORCID,Zouhri Lahcen3ORCID,Chenini Ismail1,Zghibi Adel14ORCID

Affiliation:

1. LR01ES06 Laboratoire des Ressources Minérales et Environnement, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia

2. Department of Earth Sciences, Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7120, Tunisia

3. AGHYLE, Institut Polytechnique UniLaSalle Beauvais, SFR Condorcet FR CNRS 3417, 19 Rue Pierre Waguet, 60026 Beauvais, France

4. College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar

Abstract

The primary aims of this research paper involve the creation and verification of machine learning-based quality models that utilize Integrated Irrigation Water Quality Indices (IIGWQIs) through an integrated GIS approach. We utilize the Least-Squares Support Vector Machines (LS-SVM) and the Pearson Correlation Fuzzy Inference-based System (PC-FIS) to establish forecasts for groundwater quality in the Meknassy basin. This basin serves as a representative case of an irrigated region in a mining environment under arid climatic conditions in central Tunisia. The evaluated factors for groundwater quality encompass the Irrigation Water Quality Index (IWQIndex), Sodium Adsorption Ratio Index (SARIndex), Soluble Sodium Percentage Index (SSPIndex), Potential Salinity Index (PSIndex), Kelley Index (KIndex), and Residual Sodium Carbonate Index (RSCIndex). These factors were determined based on measurements from 53 groundwater wells, which included various physico-chemical parameters. The hydrogeochemical facies identified included Ca-Mg-SO4, mixed Ca-Mg-Cl-SO4, and Na-Cl facies, revealing processes such as carbonate weathering, carbonate dissolution, interactions between rocks and groundwater, and mixing ionic substitution. In terms of the irrigation suitability categories, the IWQIndex, SSPIndex, PSIndex, Kindex, and RSCIndex indicated no limitation or minimal limitation (77.36%), secure (92.45%), favorable to excellent (66.04%), favorable (81.13%), and average to secure (88.68%), respectively. However, only 15.09% were considered favorable, according to SARIndex. The evaluation of the predictive models revealed the effectiveness of both the PC-FIS model and the LS-SVM model in accurately forecasting the IIGWQIs.

Funder

“Programme de Partenariat Hubert Curien (PHC) franco-tunisien UTIQUE-PHC-Utique France (Institut Polytechnique UniLaSalle Beauvais) et Tunisie (Université de Tunis El Manar)”

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3