Affiliation:
1. School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
Abstract
Abstract
In this work, particles of activated carbon supported by Fe-N-TiO2 (Fe-N-TiO2/AC) were synthesized and used as the three-dimensional (3D) particle electrode for folic acid wastewater treatment in the 3D electrolysis and photocatalysis coupling process. The structure, morphology, and physical and electrochemical properties of the Fe-N-TiO2/AC particles were characterized, and the results showed that Fe-N-TiO2 was bound on the surface of AC particles by chemical attachment, and the Fe-N-TiO2/AC particles had better capability of adsorption and charge transfer as compared with the TiO2/AC particles. The effects of key operating parameters in the reaction process, including the current density (optimum 0.6 mA/cm2), aeration (optimum 5 L/min), pH value (optimum 5) and the ratio of Fe-N-TiO2/AC particles to cellulose acetate film coating AC particles (optimum 4:1), were optimized regarding the total oxygen carbon (TOC) removal. Under the optimum conditions, TOC removal from folic acid wastewater reached 82.4% during 120 min photoelectrocatalysis. The kinetic analysis and mechanism study showed that the degradation process fitted to the second-order kinetic model better than to the first-order, and the system exhibited synergistic effects in inhibiting photogenic electron–hole recombination and improving electrolytic efficiency. At the same time, this system has the ability to overcome the interference of the strong ionic strength in folic acid wastewater.
Funder
National Science Foundation Natural Fund
Jiangsu Province Industry-University Research Prospective Joint Research Project
Jiangsu Postgraduate Practice Innovation
Subject
Water Science and Technology,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献