Reuse of manganese sulfate as raw material by recovery from pesticide's wastewater using nanofiltration and electro-electrodialysis: process simulation and analysis from actual data

Author:

Mejía Marchena Ricardo1,Maturana Córdoba Aymer12,Gomez Cerón Diego3,Quintero Monroy Christian3,Arismendy Montes Luis3,Cardenas Perez Carlos3

Affiliation:

1. Instituto de Estudios Hidráulicos y Ambientales–IDEHA, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia

2. Instituto de Desarrollo Sostenible-IDS, Departamento de ingeniería Civil y Ambiental, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia

3. Grupo de Investigación en Robótica y Sistemas Inteligentes, Departamento de ingeniería Eléctrica y electrónica, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia

Abstract

Abstract Reuse of wastewater, as well as recovery of valuable, toxic or harmful products in industrial discharges, still represents an important issue, not only because it reduces the effect on receiving water bodies, but also because of the economic resources it represents for industry itself. In this research, in situ regeneration of Mn2SO4 is evaluated, for its reuse as the main raw material in the original process of a fungicide plant. The regeneration is evaluated by selective recovery of Mn2+, Zn2+ and SO4= present in the wastewater produced by the industrial plant, and utilizing nanofiltration, electro-electrodialysis and chemical precipitation as separation alternatives. Each alternative was designed and evaluated technically and economically through simulations in Aspen Plus®, with data and information of the real process supplied by the company. Because zinc concentration is relatively low, its selective recovery was not attractive. The resulting Mn2SO4 solution and treated water quality in conventional alternatives were significantly poor with high costs. In contrast, nanofiltration and electro-electrodialysis alternatives generate water and by-products of higher quality and reuse potential with significantly lower costs. However, their viability depends on the membrane performance. The results were satisfactory, but future experimental studies are required to optimize the alternatives and define the correct pretreatment process.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3