Performance improvement of wastewater treatment processes by application of machine learning

Author:

Icke O.1,van Es D. M.1,de Koning M. F.1,Wuister J. J. G.1,Ng J.2,Phua K. M.2,Koh Y. K. K.2,Chan W. J.2,Tao G.2

Affiliation:

1. Aquasuite, Royal HaskoningDHV, Laan 1914 35, 3818 EX Amersfoort, The Netherlands

2. PUB, Singapore's National Water Agency, 40 Scotts Rd, Singapore 228231, Singapore

Abstract

Abstract Improving wastewater treatment processes is becoming increasingly important, due to more stringent effluent quality requirements, the need to reduce energy consumption and chemical dosing. This can be achieved by applying artificial intelligence. Machine learning is implemented in two domains: (1) predictive control and (2) advanced analytics. This is currently being piloted at the integrated validation plant of PUB, Singapore's National Water Agency. (1) Primarily, predictive control is applied for optimised nutrient removal. This is obtained by application of a self-learning feedforward algorithm, which uses load prediction and machine learning, fine–tuned with feedback on ammonium effluent. Operational results with predictive control show that the load prediction has an accuracy of ≈88%. It is also shown that an up to ≈15% reduction of aeration amount is achieved compared to conventional control. It is proven that this load prediction-based control leads to stable operation and meeting effluent quality requirements as an autopilot system. (2) Additionally, advanced analytics are being developed for operational support. This is obtained by application of quantile regression neural network modelling for anomaly detection. Preliminary results illustrate the ability to autodetect process and instrument anomalies. These can be used as early warnings to deliver data-driven operational support to process operators.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3