Data driven multiple objective optimization of AAO process towards wastewater effluent biological toxicity reduction

Author:

Hu JieORCID,Yin RanORCID,Wang JinfengORCID,Ren Hongqiang

Abstract

AbstractWhile the anaerobic-anoxic-oxic (AAO) process is the most widely applied biological wastewater treatment process in municipal wastewater treatment plants (WWTPs), it struggles to meet the increasing demands on biological toxicity control of the treated effluent. To tackle this challenge, this study develops machine learning (ML)-based models for optimizing the AAO treatment process towards improving its toxicity reduction efficacy for the effluent. The water quality parameters, treatment process parameters, and biological toxicity information (based on the nematode bioassay) of the effluent collected from 122 WWTPs in China are used to train the models. The validated models accurately predict the effluent’s quality parameters (average R2 = 0.81) and the biological toxicity reduction ratio of treatment process (R2 = 0.86). To further improve the toxicity reduction, we developed a multiple objective optimization framework to optimize the AAO process via unit process recombination. In the short-range unit combination, the toxicity reduction ratio of the four-unit combined processes (up to 79.8% of anaerobic-aerobic-anaerobic-aerobic) is significantly higher than others. After optimization, it helps to improve the average toxicity reduction efficacy of 122 WWTPs from 48.6% to 70.7%, with a maximum of 87.5%. The methodologies and findings derived from this work are expected to provide the foundation for the optimization, expansion, and technical transformation of biological wastewater treatment in WWTPs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3