Fault detection and diagnosis in water resource recovery facilities using incremental PCA

Author:

Kazemi Pezhman1,Giralt Jaume1,Bengoa Christophe1,Masoumian Armin2,Steyer Jean-Philippe3

Affiliation:

1. Universitat Rovira i Virgili, Departament d'Enginyeria Química, Avda. Paisos Catalans, 26, 43007, Tarragona, Spain

2. Universitat Rovira i Virgili, Departament d'Enginyeria Informàtica i Matemàtiques, Avda. Paisos Catalans, 26, 43007, Tarragona, Spain

3. INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100, Narbonne, France

Abstract

Abstract Because of the static nature of conventional principal component analysis (PCA), natural process variations may be interpreted as faults when it is applied to processes with time-varying behavior. In this paper, therefore, we propose a complete adaptive process monitoring framework based on incremental principal component analysis (IPCA). This framework updates the eigenspace by incrementing new data to the PCA at a low computational cost. Moreover, the contribution of variables is recursively provided using complete decomposition contribution (CDC). To impute missing values, the empirical best linear unbiased prediction (EBLUP) method is incorporated into this framework. The effectiveness of this framework is evaluated using benchmark simulation model No. 2 (BSM2). Our simulation results show the ability of the proposed approach to distinguish between time-varying behavior and faulty events while correctly isolating the sensor faults even when these faults are relatively small.

Funder

Ministerio de Economía y Competitividad

“la Caixa” Foundation

Universitat Rovira i Virgili

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference30 articles.

1. Reconstruction-based contribution for process monitoring;Alcala;Automatica,2009

2. Stochastic optimization for PCA and PLS. 2012 50th Annual Allerton Conference on Communication, Control, and Computing;Arora;Allerton,2012

3. Incremental PCA for online visual learning and recognition;Artač,2002

4. Brand M. 2002 Incremental singular value decomposition of uncertain data with missing values. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2350, 707–720.

5. Online principal component analysis in high dimension: which algorithm to choose?;Cardot;International Statistical Review,2018

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3