Exploring the effects of faults on the performance of a biological wastewater treatment process

Author:

Ivan Heidi Lynn1ORCID,Zaccaria Valentina1ORCID

Affiliation:

1. 1 Future Energy Center, Mälardalen University, SE-721 23 Västerås, Sweden

Abstract

ABSTRACT To prioritise which faults should be detected in a biological wastewater treatment process, and with what level of urgency, it is necessary to understand the effect that they have on the process. Using the Benchmark Simulation Model No. 1 and 2. (BSM1 and BSM2), several process and sensor faults were considered and their impacts on various cost, quality, and controller performance evaluation metrics analysed. Both the cost of treating the wastewater and the quality of the effluent were impacted in varying degrees of severity by the faults tested. The most influential faults in both models were decreases to autotrophic and heterotrophic growth rates, decreases to the heterotrophic death rate, and the inhabitation fault. It was shown that only larger fault sizes were significant, and the required speed of detection is dependent on the fault profile. Prioritising detection of the most influential faults was shown to have significant effects on monitoring requirements for fault detection and the subsequent complexity required of a fault detection system. A valuable takeaway was the similarity of results from BSM1 and BSM2; the consistency of the influential process faults suggests that systems that can be described by these models are likely affected by the same faults.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3