Mass transfer phenomena in biofilm systems

Author:

Wäsche S.1,Horn H.2,Hempel D.C.1

Affiliation:

1. TU Braunschweig, Institute of Biochemical Engineering, Gaussstr. 17, 38100 Braunschweig, Germany (E-mail: ibvt@tu-bs.de)

2. FH Magdeburg, Hydrochemistry, Brandenburger Str. 9, 39104 Magdeburg, Germany (E-mail: harald.horn@Chemie.FH-Magdeburg.de)

Abstract

Mathematical models allow the simulation of microorganism growth and substrate transport in biofilm systems. Nevertheless there is still a lack of knowledge about the mass transfer of substrate in the boundary layer between biofilm and bulkphase. Several biofilms were cultivated under different substrate and hydrodynamic conditions in a biofilm tube reactor. Oxygen concentration profiles were measured with oxygen microelectrodes in the biofilm and in the boundary layer. The thickness of the concentration layer was found to depend on surface structure which depends on the substrate loading and the hydrodynamic conditions during the growth phase of the biofilm. Biofilm density and maximum substrate flux were also influenced by growth conditions. An empirical function for the concentration layer thickness was formulated for biofilms grown under different conditions to describe transport phenomena in the boundary layer.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3