The HOCS paradigm shift from disciplinary knowledge (LOCS) - to interdisciplinary evaluative, system thinking (HOCS): what should it take in science-technology-environment-society oriented courses, curricula and assessment?

Author:

Zoller U.1,Scholz R.W.2

Affiliation:

1. Faculty of Science and Science Education - Chemistry, Haifa University - Oranim, Kiryat Tivon 36006, Israel (E-mail: uriz@research.haifa.ac.il)

2. Natural and Social Science Interface (UNS), Department of Environmental Sciences, Swiss Federal Institute of Technology, Zurich, ETH Zentrum HAD, Haldenbachstrasse 44, CH-8092 Zurich, Switzerland (E-mail: roland.scholz@uns.umnw.ethz.ch)

Abstract

Given the current world state of affairs, striving for sustainability and the consequent paradigm shift: growth-to-sustainable development, correction-to-prevention and options selection-to-options generation: the corresponding paradigm shift in science-technology-environment-society (STES) education is unavoidable. Accordingly, the essence of the current reform in STES education, worldwide, is a purposed effort to develop students' higher-order cognitive skills (HOCS) capability; i.e., question-asking, critical system thinking, decision making and problem solving, at the expense of the “delivery” of lower-order cognitive skills (LOCS)-oriented knowledge. This means a paradigm shift from the contemporary prevalent LOCS algorithmic teaching to HOCS evaluative learning and HOCS-promoting courses, curricula, teaching strategies and assessment methodologies, leading, hopefully to evaluative thinking and transfer. Following the formulation of selected relevant axioms, major paradigm shift in STES research and education for sustainability have been identified. The consequent shift, in the STES context, from disciplinary to inter- and transdisciplinary learning, in science technology and environmental engineering education is discussed, followed by selected examples of successfully implemented HOCS-promoting courses, and assessment methodologies. It is argued, that transferable “HOCS learning” for sustainability can and should be done.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3