Basic influent sewage quality reflects sewershed characteristics in Tokyo city

Author:

Guo Zhongyu1,Hatakeyama Takayuki1,Yoshimura Chihiro1ORCID,Wang Tingting2,Hatano Yuta1

Affiliation:

1. a Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan

2. b Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan

Abstract

Abstract Sewage comprises multifarious information on sewershed characteristics. For instance, influent sewage quality parameters (ISQPs) (e.g., total nitrogen (TN)) are being monitored regularly at all treatment plants. However, the relationship between ISQPs and sewershed characteristics is rarely investigated. Therefore, this study statistically investigated relationships between ISQPs and sewershed characteristics, covering demographic, social, and economic properties in Tokyo city as an example of a megacity. To this end, we collected ISQPs and sewershed characteristic data from 2015 to 2020 in 10 sewersheds in Tokyo city. By principal component analysis, spatial variability of ISQPs was aggregated into two principal components (89.8% contribution in total), indicating organics/nutrients and inorganic salts, respectively. Concentrations of organics/nutrients were significantly correlated with the population in sewersheds (daytime population density, family size, age distribution, etc.). Inorganic salts are significantly correlated with land cover ratios. Finally, a multiple regression model was developed for estimating the concentration of TN based on sewershed characteristics (R2=0.97). Scenario analysis using the regression model revealed that possible population movements in response to the coronavirus pandemic would substantially reduce the concentration of TN. These results indicate close relationships between ISQPs and sewershed characteristics and the potential applicability of big data of ISQPs to estimate sewershed characteristics and vice versa.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3