Monitoring of three drinking water treatment plants using flow cytometry

Author:

Helmi K.1,Watt A.1,Jacob P.1,Ben-Hadj-Salah I.1,Henry A.1,Méheut G.1,Charni-Ben-Tabassi N.1

Affiliation:

1. Veolia Environnement Recherche et Innovation, Immeuble le Dufy, 1 Place de Turenne, 94417 St Maurice Cedex, France

Abstract

A 4-month sampling campaign has been conducted for the monitoring of three drinking water treatment plants using flow cytometry and culture-based methods to provide information related to changes in bacterial concentration according to treatments. Flow cytometry is a fast and user-friendly technique enabling bacteria quantification and viability assessment in less than 1 hour. Specific profiles regarding log-reduction of total bacteria were obtained for each treatment plant. Chlorination appeared to be the most effective by causing metabolism inactivation and nucleic acid damages. Ozonation showed a significant impact on cell activity in contrast with ultraviolet treatment which strongly affected bacterial DNA. In addition, the results showed that active bacteria quantified by flow cytometry were significantly correlated with culturable bacteria. This alternative approach appeared as gainful compared to culture methods as it greatly facilitates the diagnosis of treatment plant process for drinking water production monitoring.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3