Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions

Author:

Beydilli M. I.1,Pavlostathis S. G.1,Tincher W. C.2

Affiliation:

1. School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

2. School of Textile & Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

The objective of this research was to generate technical background for the development of a fixed-film anaerobic reactor to renovate reactive textile dyebaths and reuse the high salt-containing mixture in the dyeing process. Six commercial reactive azo dyes (Black-5; Red-2 and 120; Yellow-3, 15 and 17) were chosen for this study. Using an anaerobic, methanogenic culture enriched from municipal sewage sludge, batch assays were performed to evaluate potential toxicity of the selected dyes to the anaerobic microorganisms as well as to determine the anaerobic biodegradability of these dyes. Total gas and methane production were monitored. No significant toxic effects were observed at 300 mg/L concentration for all dyes tested. At the end of three consecutive feeding cycles all dyes exhibited overall color removals in the range of 77.8 and 97.1%. An assay intended to determine the toxic limit and kinetics of color removal of Red-2 revealed that up to 300 mg/L, this dye was not toxic and contributed to increased total gas and methane production over that of a control. However, higher concentrations of Red-2 (500, 1000 and 2000 mg/L) depressed gas production despite continued decolorization. These results suggest that color removal under the low redox conditions maintained by the methanogenic culture occurs irrespective of the culture activity level.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3