Biodegradation of high cellulose-lignin content agricultural wastes in bioreactors

Author:

KILIÇ YoncaORCID,YILMAZ ÇİNÇİN Roda Gökçe1ORCID,AĞDAĞ Osman Nuri2ORCID

Affiliation:

1. PAMUKKALE ÜNİVERSİTESİ

2. Pamukkale

Abstract

The bioreactor landfill is a solid waste disposal method that provides rapid degradation of solid waste and acquisition of methane. Bioreactors in which leachate circulation is carried out are generally operated anaerobically. The biodegradation of wastes with high lignin and cellulose content is very difficult. Especially under anaerobic conditions (moreover, if there is a lack of moisture), such wastes almost never decompose. In this study, the degradation of waste sunflower stalks that are difficult to biodegrade and have a high lignin-cellulose content and the production of methane gas in semi-aerobic bioreactors have been investigated. Sunflower stalks were loaded into the bioreactors in different proportions and mixed with the organic fraction of municipal solid waste (OFSWM). The bioreactors have been operated under different operating conditions. The contents of cellulose, hemicellulose, lignin, and initial and final organic matter in the wastes loaded into the bioreactors were examined. Parameters such as pH, COD, BOD5, TKN, NH4-N in leachate were analysed and the amounts of total and methane gas were measured. Initially, all bioreactors have been operated anaerobically. In the decomposition of the sunflower stalk, while 43% of the organic matter removal was achieved in the anaerobic bioreactor, 60% of the organic matter removal was realized in the semi-aerobic/anaerobic bioreactor. The other agricultural wastes were then subjected to decomposition under semi-aerobic/anaerobic operating conditions. As a result of the study, it can be said that semi-aerobic pretreatment accelerates the decomposition of agricultural waste with a high lignin and cellulose content, decreases the COD values of leachate, and increases the amount of methane.

Funder

Pamukkale Universitesi

Publisher

Environmental Research and Technology

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3