Impact of treated wastewater on plant growth: leaf fluorescence, reflectance, and biomass-based assessment

Author:

Ofori Solomon1,Abebrese David Kwesi2,Klement Aleš3,Provazník Daniel4,Tomášková Ivana4,Růžičková Iveta1,Wanner Jiří1

Affiliation:

1. a Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Prague, Czech Republic

2. b Department of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 – Suchdol, Prague, Czech Republic

3. c Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 – Suchdol, Prague, Czech Republic

4. d Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Prague 6 - Suchdol, Prague, Czech Republic

Abstract

ABSTRACT The study evaluated the impact of treated wastewater on plant growth through the use of hyperspectral and fluorescence-based techniques coupled with classical biomass analyses, and assessed the potential of reusing treated wastewater for irrigation without fertilizer application. Cherry tomato (Solanum lycopersicum) and cabbage (Brassica oleracea L.) were irrigated with tap water (Tap), secondary effluent (SE), and membrane effluent (ME). Maximum quantum yield of photosystem II (Fv/Fm) of tomato and cabbage was between 0.78 to 0.80 and 0.81 to 0.82, respectively, for all treatments. The performance index (PI) of Tap/SE/ME was 2.73, 2.85, and 2.48 for tomatoes and 4.25, 3.79, and 3.70 for cabbage, respectively. Both Fv/Fm and PI indicated that the treated wastewater did not have a significant adverse effect on the photosynthetic efficiency and plant vitality of the crops. Hyperspectral analysis showed higher chlorophyll and nitrogen content in leaves of recycled water-irrigated crops than tap water-irrigated crops. SE had 10.5% dry matter composition (tomato) and Tap had 10.7% (cabbage). Total leaf count of Tap/SE/ME was 86, 111, and 102 for tomato and 37, 40, and 42 for cabbage, respectively. In this study, the use of treated wastewater did not induce any photosynthetic-related or abiotic stress on the crops; instead, it promoted crop growth.

Funder

Horizon 2020

European Structural and Investment Funds projects NutRisk

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3