Multispectral, Thermographic and Spectroradiometric Analyses Unravel Bio-Stimulatory Effects of Wood Distillate in Field-Grown Chickpea (Cicer arietinum L.)

Author:

Carril Pablo1ORCID,Colzi Ilaria2ORCID,Salvini Riccardo3ORCID,Beltramone Luisa3ORCID,Rindinella Andrea3ORCID,Ermini Andrea34ORCID,Gonnelli Cristina2,Garzelli Andrea5ORCID,Loppi Stefano16ORCID

Affiliation:

1. Department of Life Sciences, University of Siena, Via Mattioli 3, 53100 Siena, Italy

2. Department of Biology, University of Florence, Via Micheli 1, 50121 Florence, Italy

3. Department of Environment, Earth and Physical Sciences and Centre of Geotechnologies CGT, University of Siena, Via Vetri Vecchi 34, 52027 San Giovanni Valdarno, Italy

4. National PhD Program in Space Science and Technology, University of Trento, 38122 Trento, Italy

5. Department of Information Engineering, University of Siena, Via Roma 56, 53100 Siena, Italy

6. BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy

Abstract

Wood distillate (WD) has recently emerged as a promising bio-stimulant for sustainable legume crop production, owing to its ability to enhance seed yield and quality. However, no studies exist on the effects of WD on chickpea plants at pre-harvesting stages, hindering the farmers’ ability to acquire valuable knowledge on the early action of WD on the plants’ status and preventing the establishment of proactive measures to optimize WD use in agriculture. In this study, two multispectral, thermographic and spectroradiometric surveys, along with in-situ measurements of specific plant biometric traits, were conducted across the reproductive stage of field-grown chickpea in order to evaluate the early involvement of WD on plant health. The acquired multispectral images were used to calculate the Normalized Difference Vegetation Index (NDVI), revealing a notable ~35% increase in NDVI scores of WD-treated plants at the onset of physiological maturity, and indicating an improved plant status compared to the control (water-treated) plants. Moreover, control and WD-treated plants exhibited distinct spectral signatures across the visible, near-infrared (NIR) and short-wave infrared (SWIR) spectra, suggesting potential changes in their photosynthetic capacity, structural properties and water content both at the leaf and at the pod level. Furthermore, WD-treated plants showed a 25% increase in pod production, particularly at the beginning of seed maturity, suggesting that enhancements in plant status were also reflected in higher pod yields. These results point to a beneficial effect of WD on plant health during the preliminary stages of seed formation and indicate that a combination of both multispectral and spectroradiometric analyses can provide critical insights on the status of chickpea crops at pre-harvesting stages. In addition, these findings emphasize the importance of analyzing pre-harvesting stages to gain insights into the early involvement of WD in promoting plant health and, ultimately, in predicting final crop yields.

Funder

CLASS

European Union-NextGenerationEU-Mission 4 “Education and Research”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3