Abstract
Industrial water usage results in large volumes of liquid wastes rich in organic pollutants. Waste waters from certain industrial chemical operations (e.g. organic synthesis, perfume industry) will sometimes contain organic solvents at relatively high concentrations. The presence of organic solvents is undesirable in the sewerage system and so must be removed from the industrial effluent. Anaerobic treatment of many of these organic solvents is possible, in which the organic material is converted ~90% to volatile substances -carbon dioxide and methane gas- and ~10% to new bacterial cells (solids). Industry will be using less water in the future. Increased water charges will lead to more precise control and integrated processes will reduce wastage. The smaller volumes of more concentrated waste will be ideal for anaerobic digestion.
In order to evaluate the optimum conditions for the anaerobic digestion of propan-2-ol (iso-propanol) the kinetic parameters of the Monod rate model, namely, maximum growth rate (µm), yield (Y), half velocity constant (Ks) and endogenous decay coefficient (Kd), were determined at the temperature range 25°-40°C, inclusively. The regulatory role of molecular hydrogen was investigated and discussed, and also its possible use as a monitor feature in the anaerobic digestion.
Subject
Water Science and Technology,Environmental Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献