Development and Integration of Inkjet-Printed Strain Sensors for Angle Measurement of an Origami-Based Delta Mechanism

Author:

ACER KALAFAT Merve1

Affiliation:

1. İSTANBUL TEKNİK ÜNİVERSİTESİ

Abstract

An origami-based parallel mechanism is an excellent solution for various applications where small-scale, low profile and foldability are needed. These mechanisms are composed of rigid and flexible layers designed according to layer-by-layer fabrication methods. In addition, it becomes important to design functional layers that provide user feedback. Here, the design and fabrication of an origami-based 3 Degree-of-Freedom (DoF) Delta mechanism, which has the same traditional kinematics as a Delta mechanism, are presented. A sensor layer was designed composed of 3 strain gauges to measure the angular position of the actuated arm of the mechanism. The strain-gauge patterns were printed on a special Polyethylene terephthalate (PET) using Silver nanoparticle ink with a commercial desktop printer. The integration of these sensors has been studied by placing them in different locations between rigid layers. The sensors' outputs were presented when subjected to step and sinusoidal inputs of the actuated arm. The experiment results show that the developed sensor layer can track the angular position changes of the actuated lower arm, which is a promising result to be used in a control loop in the feature.

Publisher

Hitit University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3