Author:
Shem-Tov Shachar,Fennimore Steve A.,Lanini W. Thomas
Abstract
During dry weather, preplant irrigation of raised beds followed by shallow tillage to create a smooth planting bed is necessary to establish a good lettuce stand. Depletion of germinable weed seeds in the top 5 cm of soil by the sequence of preplant irrigation, followed 7 to 14 d later by shallow tillage to prepare a seedbed, reduces weed density in the subsequent crop. Preplant irrigation and tillage reduces weed density and, when used together with preplant herbicide, provides effective weed control in the cropping season. Preplant and in-crop weed densities resulting from furrow or sprinkler preplant irrigation, followed by shallow tillage and lettuce planting 7 or 14 d later, were compared with the no preplant irrigation control. During the 14-d preplant period, up to 127 weeds/m2emerged and were removed by shallow tillage before crop planting. Preplant irrigation and shallow tillage reduced in-crop weed density by up to 77% and reduced hand-weeding and crop-thinning time by up to 50% compared with the no preplant irrigation and no herbicide control. Delaying tillage for 14 d following preplant irrigation provided sufficient time for adequate heat unit accumulation (>120 growing degree days, base 10 C), allowing for many weeds to germinate and be killed by shallow tillage. However, 7 d between preplant irrigation and tillage resulted in less heat unit accumulation (<50 growing degree days, base 10 C) and less weed germination before tillage. Preplant irrigation together with pronamide at either 0.67 or 1.34 kg ai/ha reduced weed density compared with the no preplant irrigation. Effective use of preplant irrigation and preplant weed removal may increase the consistency of weed control with lower pronamide rates. Preplant irrigation followed by shallow tillage is an effective cultural practice to control in-crop weeds for conventional lettuce production.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献