Intrarow Weed Removal in Broccoli and Transplanted Lettuce with an Intelligent Cultivator

Author:

Lati Ran N.,Siemens Mark C.,Rachuy John S.,Fennimore Steven A.

Abstract

The performance of the Robovator (F. Poulsen Engineering ApS, Hvals⊘, Denmark), a commercial robotic intrarow cultivator, was evaluated in direct-seeded broccoli and transplanted lettuce during 2014 and 2015 in Salinas, CA, and Yuma, AZ. The main objective was to evaluate the crop stand after cultivation, crop yield, and weed control efficacy of the Robovator compared with a standard cultivator. A second objective was to compare hand weeding time after cultivation within a complete integrated weed management (IWM) system. Herbicides were included as a component of the IWM system. The Robovator did not reduce crop stand or marketable yield compared with the standard cultivator. The Robovator removed 18 to 41% more weeds at moderate to high weed densities and reduced hand-weeding times by 20 to 45% compared with the standard cultivator. At low weed densities there was little difference between the cultivators in terms of weed control and hand-weeding times. The lower-hand weeding time with the Robovator treatments suggest that robotic intrarow cultivators can reduce dependency on hand weeding compared with standard cultivators. Technological advancements and price reductions of these types of machines will likely improve their weed removal efficacy and the long-term viability of IWM programs that will use them.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference29 articles.

1. Automatic GPS-based intra-row weed knife control system for transplanted row crops

2. Evaluation and Economics of a Machine-Vision Guided Cultivation Program in Broccoli and Lettuce

3. Smith RF , Fennimore SA , LeStrange M (2007) Lettuce: Integrated Weed Management. http://www.ipm.ucdavis.edu/PMG/r441700111.html. Accessed June 12, 2015

4. Mutations in Lettuce Improvement

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3