Weed Control, Environmental Impact, and Economics of Weed Management Strategies in Glyphosate-Resistant Soybean

Author:

Stewart Christie L.,Nurse Robert E.,Van Eerd Laura L.,Vyn Richard J.,Sikkema Peter H.

Abstract

With the number of glyphosate-resistant weed species increasing in North America and a lack of new herbicide chemistries being developed, growers are shifting toward using older herbicides that are more expensive and may be less environmentally friendly. Therefore, to determine which weed management strategies are most cost effective and have the lowest impact on the environment we evaluated the efficacy, environmental impact, and the profitability of several weed management strategies in glyphosate-resistant soybean over a 3-yr period (2007 to 2009) at three locations in southwestern Ontario, Canada. No visible injury to soybean was observed with the herbicide treatments evaluated. A sequential application of glyphosate consistently provided high levels of weed control (99 to 100%) at 56 d after treatment in comparison with one- or two-pass herbicide programs. Soybean yield did not differ between the two-pass herbicide programs and glyphosate applied early POST; however, a yield benefit was found with a sequential application of glyphosate or a PRE herbicide followed by glyphosate compared with glyphosate applied only at late POST. The two-pass herbicide programs had higher environmental impact (EI) (> 23) than the one-pass herbicide programs (< 15), except when imazethapyr was followed by or tank-mixed with glyphosate, which had an equivalent EI (∼ 14) to the one-pass herbicide programs. Not surprisingly because of the low purchase price of glyphosate, gross margins were highest for treatments that included glyphosate. However, to reduce the selection pressure on glyphosate-resistant weed biotypes, to reduce environmental impact, and to increase gross margins a combination of glyphosate with another mode of action would be most beneficial. In this study glyphosate + imazethapyr was the best alternative to a sequential two-pass glyphosate program.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3