Selecting for Weed Resistance: Herbicide Rotation and Mixture

Author:

Beckie Hugh J.,Reboud Xavier

Abstract

Herbicide rotations and mixtures are widely recommended to manage herbicide resistance. However, little research has quantified how these practices actually affect the selection of herbicide resistance in weeds. A 4-yr experiment was conducted in western Canada from 2004 to 2007 to examine the impact of herbicide rotation and mixture in selecting for acetolactate synthase (ALS) inhibitor resistance in the annual broadleaf weed, field pennycress, co-occurring in wheat. Treatments consisted of the ALS-inhibitor herbicide, ethametsulfuron, applied in a mixture with bromoxynil/MCPA formulated herbicide (photosystem-II inhibitor/synthetic auxin), or in rotation with the non-ALS inhibitor at an ALS-inhibitor application frequency of 0, 25, 50, 75, and 100% (i.e., zero to four applications, respectively) over the 4-yr period. The field pennycress seed bank at the start of the experiment contained 5% ethametsulfuron-resistant seed. Although weed control was only marginally reduced, resistance frequency of progeny of survivors increased markedly after one ALS-inhibitor application. At the end of the experiment, the level of resistance in the seed bank was buffered by susceptible seed, increasing from 29% of recruited seedlings after one application to 85% after four applications of the ALS inhibitor. The level of resistance in the seed bank for the mixture treatment after 4 yr remained similar to that of the nontreated (weedy) control or 0% ALS-inhibitor rotation frequency treatment. The results of this study demonstrate how rapidly ALS-inhibitor resistance can evolve as a consequence of repeated application of herbicides with this site of action, and supports epidemiological information from farmer questionnaire surveys and modeling simulations that mixtures are more effective than rotations in mitigating resistance evolution through herbicide selection.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3