Influence of Deep Tillage, a Rye Cover Crop, and Various Soybean Production Systems on Palmer Amaranth Emergence in Soybean

Author:

DeVore Justin D.,Norsworthy Jason K.,Brye Kristofor R.

Abstract

Glyphosate-resistant Palmer amaranth has become a major threat to soybean production in the southern United States. Arkansas soybean producers rely heavily on glyphosate-resistant soybean; hence, an alternative solution for controlling resistant Palmer amaranth is needed. A field experiment was conducted at Marianna, AR, during 2009 and 2010 in which soybean production systems were tested in combination with deep tillage and no tillage to determine the impact on Palmer amaranth emergence. To establish a baseline population, 250,000 glyphosate-resistant Palmer amaranth seeds were placed in a 1-m2area in the middle of each plot and incorporated in the soil, and emergence was evaluated five times during the season. Production systems of full-season soybean with a rye cover crop or soybean double-cropped with wheat, which had high amounts of plant residue on the soil surface reduced Palmer amaranth emergence more than systems without deep tillage and a cover crop or wheat. When used in combination with deep tillage, these systems reduced Palmer amaranth emergence by 98 and 97%, respectively, in 2009 and by 73 and 82%, respectively, in 2010. Deep tillage alone caused an 81% reduction in emergence averaged over both years. Soybean double-cropped with wheat used in combination with deep tillage provided a 95% reduction in Palmer amaranth emergence over the 2-yr period. This research shows that deep tillage in combination with soybean production systems that have high amounts of residue on the soil surface are alternative means for providing a high level of control of glyphosate-resistant Palmer amaranth and could lessen the dependence on chemical weed control.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference40 articles.

1. Culpepper A. S. , Webster T. M. , Sosnoskie L. M. , and York A. C. 2010. Glyphosate-resistant Palmer amaranth in the United States. http://hdl.handle.net/10113/48979. Accessed: November 10, 2011.

2. Heap I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: August 17, 2012.

3. Cover crops for herbicide replacement in no-tillage corn (Zea mays);Yenish;Weed Technol.,1996

4. Economic and agronomic assessment of deep tillage in soybean production on Mississippi River Valley soils. Agron;Popp;J.,2001

5. Mechanisms of weed suppression in cover crop–based production systems;Creamer;HortScience.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3