Influence of cover crop residue and residual herbicide on emergence dynamics of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in grain sorghum

Author:

Dhanda SachinORCID,Kumar VipanORCID,Dille J. AnitaORCID,Obour Augustine,Yeager Elizabeth A.ORCID,Holman Johnathan

Abstract

Abstract A field study was conducted from 2020 to 2023 at Kansas State University Agricultural Research Center near Hays, KS, to understand the emergence dynamics and periodicity of glyphosate-resistant (GR) Palmer amaranth (Amaranthus palmeri S. Watson) as influenced by cover crop (CC) residue and residual herbicide in grain sorghum [Sorghum bicolor (L.) Moench]. The study site was under a wheat (Triticum aestivum L.)–sorghum–fallow rotation with a natural seedbank of GR A. palmeri. Treatments included (1) fall-planted CC mixture [winter triticale (×Triticosecale Wittm. ex A. Camus [Secale × Triticum])/winter peas (Pisum sativum L.)/rapeseed (Brassica napus L.)/radish (Raphanus sativus L.)] after wheat harvest and terminated at triticale heading stage (next spring before sorghum planting) with glyphosate alone or (2) glyphosate plus acetochlor/atrazine, (3) chemical fallow (no CC but treated with acetochlor/atrazine and dicamba before sorghum planting), and (4) nontreated control (no CC and no herbicide). Results indicated that CC terminated with glyphosate plus acetochlor/atrazine had a delayed and reduced cumulative emergence of GR A. palmeri as compared with chemical fallow and CC terminated with glyphosate alone across all 3 yr. Compared with chemical fallow, the CC terminated with glyphosate alone and glyphosate plus acetochlor/atrazine required 66 to 643 and 105 to 1,257 more cumulative growing degree days, respectively, to achieve 90% cumulative emergence of GR A. palmeri across all 3 yr. The combined effect of CC residue with glyphosate plus acetochlor/atrazine reduced the total emergence counts of GR A. palmeri by 42% to 56% and 82% to 94% as compared with chemical fallow and nontreated control, respectively. These results suggest that fall-planted CC combined with a residual herbicide at termination can be utilized for GR A. palmeri suppression in grain sorghum.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3