Abstract
Abstract
A field study was conducted from 2020 to 2023 at Kansas State University Agricultural Research Center near Hays, KS, to understand the emergence dynamics and periodicity of glyphosate-resistant (GR) Palmer amaranth (Amaranthus palmeri S. Watson) as influenced by cover crop (CC) residue and residual herbicide in grain sorghum [Sorghum bicolor (L.) Moench]. The study site was under a wheat (Triticum aestivum L.)–sorghum–fallow rotation with a natural seedbank of GR A. palmeri. Treatments included (1) fall-planted CC mixture [winter triticale (×Triticosecale Wittm. ex A. Camus [Secale × Triticum])/winter peas (Pisum sativum L.)/rapeseed (Brassica napus L.)/radish (Raphanus sativus L.)] after wheat harvest and terminated at triticale heading stage (next spring before sorghum planting) with glyphosate alone or (2) glyphosate plus acetochlor/atrazine, (3) chemical fallow (no CC but treated with acetochlor/atrazine and dicamba before sorghum planting), and (4) nontreated control (no CC and no herbicide). Results indicated that CC terminated with glyphosate plus acetochlor/atrazine had a delayed and reduced cumulative emergence of GR A. palmeri as compared with chemical fallow and CC terminated with glyphosate alone across all 3 yr. Compared with chemical fallow, the CC terminated with glyphosate alone and glyphosate plus acetochlor/atrazine required 66 to 643 and 105 to 1,257 more cumulative growing degree days, respectively, to achieve 90% cumulative emergence of GR A. palmeri across all 3 yr. The combined effect of CC residue with glyphosate plus acetochlor/atrazine reduced the total emergence counts of GR A. palmeri by 42% to 56% and 82% to 94% as compared with chemical fallow and nontreated control, respectively. These results suggest that fall-planted CC combined with a residual herbicide at termination can be utilized for GR A. palmeri suppression in grain sorghum.
Publisher
Cambridge University Press (CUP)