Rhizosphere Microbial Community Dynamics in Glyphosate-Treated Susceptible and Resistant Biotypes of Giant Ragweed (Ambrosia trifida)

Author:

Schafer Jessica R.,Hallett Steven G.,Johnson William G.

Abstract

In a previous study, glyphosate-susceptible and -resistant giant ragweed biotypes grown in sterile field soil survived a higher rate of glyphosate than those grown in unsterile field soil, and the roots of the susceptible biotype were colonized by a larger number of soil microorganisms than those of the resistant biotype when treated with 1.6 kg ae ha−1glyphosate. Thus, we concluded that soil-borne microbes play a role in glyphosate activity and now hypothesize that the ability of the resistant biotype to tolerate glyphosate may involve microbial interactions in the rhizosphere. The objective of this study was to evaluate differences in the rhizosphere microbial communities of glyphosate-susceptible and -resistant giant ragweed biotypes 3 d after a glyphosate treatment. Giant ragweed biotypes were grown in the greenhouse in unsterile field soil and glyphosate was applied at either 0 or 1.6 kg ha−1. Rhizosphere soil was sampled 3 d after the glyphosate treatment, and DNA was extracted, purified, and sequenced with the use of Illumina Genome Analyzer next-generation sequencing. The taxonomic distribution of the microbial community, diversity, genera abundance, and community structure within the rhizosphere of the two giant ragweed biotypes in response to a glyphosate application was evaluated by metagenomics analysis. Bacteria comprised approximately 96% of the total microbial community in both biotypes, and differences in the distribution of some microbes at the phyla level were observed. Select soil-borne plant pathogens (VerticilliumandXanthomonas) and plant-growth–promoting rhizobacteria (Burkholderia) present in the rhizosphere were influenced by either biotype or glyphosate application. We did not, however, observe large differences in the diversity or structure of soil microbial communities among our treatments. The results of this study indicate that challenging giant ragweed biotypes with glyphosate causes perturbations in rhizosphere microbial communities and that the perturbations differ between the susceptible and resistant biotypes. However, biological relevance of the rhizosphere microbial community data that we obtained by next-generation sequencing remains unclear.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3