Glyphosate has a negligible impact on bacterial diversity and dynamics during composting

Author:

Grenier Vanessa12ORCID,Laur Joan123,Gonzalez Emmanuel456,Pitre Frederic E.123

Affiliation:

1. Department of Biological Sciences Université de Montréal Montréal Québec Canada

2. Institut de recherche en biologie végétale Montréal Québec Canada

3. Montreal Botanical Garden Montreal Québec Canada

4. Canadian Centre for Computational Genomics, McGill Genome Centre McGill University Montréal Québec Canada

5. Department of Human Genetics McGill University Montreal Québec Canada

6. Gerald Bronfman Department of Oncology McGill University Montréal Québec Canada

Abstract

AbstractThe herbicide glyphosate has several potential entry points into composting sites and its impact on composting processes has not yet been evaluated. To assess its impact on bacterial diversity and abundance as well as on community composition and dynamics, we conducted a mesocosm experiment at the Montreal Botanical Garden. Glyphosate had no effect on physicochemical property evolution during composting, while it was completely dissipated by the end of the experiment. Sampling at Days 0, 2, 28 and 112 of the process followed by 16S rRNA amplicon sequencing also found no effect of glyphosate on species richness and community composition. Differential abundance analyses revealed an increase of a few taxa in the presence of glyphosate, namely TRA3‐20 (order Polyangiales), Pedosphaeraceae and BIrii41 (order Burkholderiales) after 28 days. In addition, five amplicon sequence variants (ASVs) had lower relative abundance in the glyphosate treatment compared to the control on Day 2, namely Comamonadaceae, Pseudomonas sp., Streptomyces sp., Thermoclostridium sp. and Actinomadura keratinilytica, while two ASVs were less abundant on Day 112, namely Pedomicrobium sp. and Pseudorhodoplanes sp. Most differences in abundance were measured between the different sampling points within each treatment. These results present glyphosate as a poor determinant of species recruitment during composting.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3