Field Evaluation of Auxin Herbicide Volatility Using Cotton and Tomato as Bioassay Crops

Author:

Bauerle Matthew J.,Griffin James L.,Alford Jason L.,Curry Albert B.,Kenty Michael M.

Abstract

Research was conducted to compare cotton and tomato response to volatility of 2,4-D, dicamba, and triclopyr formulations. Herbicide treatments were applied to tilled soil during August and September, and potted plants were placed in the center of treated strips. To quantify injury, leaf cupping/crinkling/drooping; leaf rolling/strapping; stem epinasty; and stem swelling/cracking were each visually rated on an injury scale of 0 to 5 (0 = none, 1 = slight, 2 = slight to moderate, 3 = moderate, 4 = moderate to severe, and 5 = severe). Leaf cupping/crinkling/drooping injury averaged across herbicide treatments at 1× rates was 1.0 for cotton and 2.0 for tomato 14 d after treatment (DAT). Averaged across crops, leaf cupping/crinkling/drooping injury for the 1× rates 14 DAT was equivalent for the 2,4-D dimethylamine (DMA) salt, 2,4-D acid, dicamba DMA salt, dicamba diglycolamine (DGA) salt, dicamba acid, and triclopyr acid formulations and ranged from 1.1 to 1.8. For tomato, the only herbicide treatments with injury 14 DAT no greater than for the nontreated were 1× rates of 2,4-D DMA and 2,4-D acid for leaf rolling/strapping (1.0); 2,4-D acid, dicamba DMA, dicamba acid, and triclopyr acid for stem epinasty (0.3 to 0.7); and 2,4-D DMA, 2,4-D acid, dicamba DMA, dicamba DGA, dicamba acid, and triclopyr acid for stem swelling/cracking (0.1 to 0.2). A weighted factor assigned to each injury criterion provided an overall total injury estimate of 0 to 100%. When applied at 1× rates, total injury for 2,4-D isooctyl ester was 10% for cotton and 36% for tomato and for triclopyr butoxyethyl ester was 11% for cotton and 50% for tomato. For the 2,4-D DMA, 2,4-D acid, dicamba DMA, dicamba DGA, dicamba acid, and triclopyr acid formulations, total injury was 4 to 8% for cotton and 20 to 24% for tomato, and for both crops, injury was no greater than for the nontreated.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3