On the Coincidence of Complexity Classes BPC and TC$${}^{0}$$
-
Published:2022-12
Issue:4
Volume:46
Page:204-214
-
ISSN:0278-6419
-
Container-title:Moscow University Computational Mathematics and Cybernetics
-
language:en
-
Short-container-title:MoscowUniv.Comput.Math.Cybern.
Reference15 articles.
1. S. C. Kleene, ‘‘General recursive functions of natural numbers,’’ Math. Ann. 112 (1), 727–742 (1936). https://doi.org/10.1007/BF01565439
2. E. Allender, M. C. Loui, and K. W. Regan, ‘‘Complexity classes,’’ in Algorithms and Theory of Computation Handbook, Vol. 1: General Concepts and Techniques, Ed. by M. J. Atallah and M. Blanton, 2nd ed. (Chapman and Hall/CRC, Boca Raton, FL, 2009), pp. 597–620. https://doi.org/10.1201/9781584888239
3. P. Clote, ‘‘Computation models and function algebras,’’ in Handbook of Computability Theory, Ed. by E. R. Griffor, Studies in Logic and the Foundations of Mathematics 140 (Elsevier, Amsterdam, 1999), pp. 589–681. https://doi.org/10.1016/S0049-237X(99)80033-0
4. S. Mazzanti, ‘‘CRN elimination and substitution bases for complexity classes,’’ Fundam. Inform. 120 (1), 29–58 (2012). https://doi.org/10.3233/FI-2012-748
5. S. A. Volkov, ‘‘Generating some classes of recursive functions by superpositions of simple arithmetic functions,’’ Dokl. Math. 76 (1), 566–567 (2007). https://doi.org/10.1134/S1064562407040217