General recursive functions of natural numbers

Author:

Kleene S. C.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference18 articles.

1. W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Annalen99 (1928), S. 118–133; Rózsa Péter, Konstruktion nichtrekursiver Funktionen, Math. Annalen111 (1935), S. 42–60.

2. In the “functions” which we consider, the arguments are understood to range over the natural numbers (i. e. non-negative integers) and the values to be natural numbers. Also, for abbreviation, we use propositional functions of natural numbers, calling them “relations” (alternatively “classes”, when there is only one variable) and employing the following notations:(x) A (x) [for all natural numbers,A (x)], (E x) A (x) [there is a natural numberx such thatA (x)], εx [A (x)] [the least natural numberx such thatA (x), or 0 if there is no such number], — [not], ∀ [or], & [and],→[implies], ≡[is equivalent to].

3. Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. für Math. u. Physik38 (1931), S. 173–198.

4. This form of the definition was introduced by Gōdel to avoid the necessity of providing for omissions of arguments on the right in schemas (1) and (2). The operations in the construction of primitive recursive functions can be further restricted. See Rózsa Péter, Über den Zusammenhang der verschiedenen Begriffe der rekursiven Funktionen, Math. Annalen110 (1934), S. 612–632.

5. In these operations we do not require thatA andB=C be equations and that σ be a functional variable, since R1−R3 as stated when applied to equations generate equations. Thereby, our proof of IV is simplified.

Cited by 412 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Separating Markov's Principles;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. FFT on a Heterogeneous System with a General-Purpose Map-Scan Accelerator;Romanian Journal of Information Science and Technology;2024-06-27

3. Computability Theory;Handbook of the History and Philosophy of Mathematical Practice;2024

4. How much partiality is needed for a theory of computability?;Computability;2023-12-21

5. Turing Meets Machine Learning: Uncomputability of Zero-Error Classifiers;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3