1. Y. N. Klikushin, V. Y. Kobenko, "Fundamentals of identification measurements," Radio Electron. J., n.5 (2006). URI: http://jre.cplire.ru/iso/nov06/index.html.
2. A. K. Lagirvandze, A. N. Kalinichenko, T. V. Morgunova, "ECG cycles forms analysis based on machine learning techniques," Model. Syst. Networks Econ. Technol. Nature, Soc., n.4, p.75 (2019). URI: https://cyberleninka.ru/article/n/algoritm-analiza-form-kardiotsiklov-ekg-s-ispolzovaniem-tehnologiy-mashinnogo-obucheniya/viewer.
3. D. A. Kuzin, L. G. Statsenko, P. N. Anisimov, M. M. Smirnova, "Applying machine learning methods to acoustic signal classification using spectrum characteristics," Izv. SPBGETU “LETI,” n.3, p.48 (2021).
4. M. S. Salman, A. Eleyan, B. Al-Sheikh, "Discrete-wavelet-transform recursive inverse algorithm using second-order estimation of the autocorrelation matrix," TELKOMNIKA (Telecommunication Comput. Electron. Control., v.18, n.6, p.3073 (2020). DOI: https://doi.org/10.12928/telkomnika.v18i6.16191.
5. T. Hu, J. Zhao, S. Yan, W. Zhang, "Performance analysis of a wavelet packet transform applied to concrete ultrasonic detection signals," J. Phys. Conf. Ser., v.1894, n.1, p.012062 (2021). DOI: https://doi.org/10.1088/1742-6596/1894/1/012062.