1. A. K. Lagirvandze, A. N. Kalinichenko, and T. V. Morgunova, “ECG cycles forms analysis based on machine learning techniques,” Model. Syst. Networks Econ. Technol. Nature, Soc., No. 4 (32), 75–84 (2019).
2. D. A. Kuzin, L. G. Statsenko, P. N. Anisimov, and M. M. Smirnova, “Applying machine learning methods for acoustic signals classification using spectral characteristics,” Proc. of Saint Petersburg Electrotechnical University “LETI,” Ser. Informatics, Computer Engineering and Control, No. 3, 48–53 (2021).
3. M. S. Salman, A. Eleyan, and B. Al-Sheikh, “Discrete-wavelet-transform recursive inverse algorithm using second-order estimation of the autocorrelation matrix,” TELKOMNIKA, Vol. 18, No. 6, 3073–3079 (2020). https://doi.org/10.12928/telkomnika.v18i6.16191.
4. G. Galati, G. Pavan, and F. De Palo, “Chirp signals and noisy waveforms for solid-state surveillance radars,” Aerospace, Vol. 4, No. 1, 15 (2017). https://doi.org/10.3390/aerospace4010015.
5. D. O. Hogenboom and C. A. DiMarzio, “Quadrature detection of a Doppler signal,” Applied Optics.,Vol. 37, Iss. 13, 2569–2572 (1998). https://doi.org/10.1364/AO.37.002569.