Resistance of <i>Rhodococcus ruber</i> biofilms to CuO nanoparticles depending on exopolymer matrix composition

Author:

Bayandina E. A.1ORCID,Glebov G. G.2ORCID,Kuyukina M. S.2ORCID,Ivshina I. B.2ORCID

Affiliation:

1. Perm State University

2. Perm State University; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences

Abstract

   Background. The widespread use of copper oxide nanoparticles (CuO NPs) increases their release into the environment, which leads to accumulation in trophic chains. Bacterial biofilms are more resistant to physico-chemical factors compared to planktonic cells due to an exopolymer matrix (EPM) consisting of polysaccharides, proteins, lipids and nucleic acids. Rhodococcus actinobacteria are promising for environmental biotechnology due to biodegradation of petroleum products, pesticides and other organic pollutants, as well as bioaccumulation of heavy metals.   The aim. To investigate effects of CuO NPs on the viability of Rhodococcus ruber IEGM 231 cells in biofilms and the dynamics of EPM components.   Methods. R. ruber biofilms were grown on microscopy cover glass with CuO NPs and EPM components were studied using confocal laser scanning microscopy (CLSM) by differentiating staining with LIVE/DEAD to determine the number of living and dead cells, Nile Red for lipids, FITC for proteins and Calcofluor White for betapolysaccharides.   Results. It was found that R. ruber biofilms grown in a mineral medium with1.0 vol.% n-hexadecane are more resistant to CuO NPs compared to biofilms growing in a rich culture medium (meat-peptone broth). This was due to more intensive EPM formation, which plays a major role in protecting cells from the bactericidal action of nanometals. A weak stimulating effect of a low (0.001 g/l) concentration of CuO NPs on biofilm formation was registered. Dynamics and localization of main EPM components were monitored during prolonged (24–72 h) biofilm cultivation with CuO NPs. When exposed to high (0.01–0.1 g/l) concentrations of CuO NPs, a consistently high lipid content and an increase in concentrations of polysaccharides and proteins were revealed.   Conclusion. Understanding the complex interaction mechanisms of nanometals and biofilms will contribute to the development of effective biocatalysts based on immobilized bacterial cells. Also, the obtained data can be used to combat unwanted biofilms with the help of metal nanoparticles.

Publisher

FSPSI SCFHHRP

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3