Development of a flexible tooling system for sheet metal bending

Author:

Stefanovska E.,Pepelnjak T.

Abstract

This article presents the design and development of a flexible tooling system for sheet metal bending. The flexible tooling system aims to reduce manufacturing disturbances and increase the efficiency of the forming process. First and foremost, the structural behaviour of the sheet metal is investigated using the finite element method for the numerical simulation of the three-point bending process. The analysis’ findings enabled the prediction of component reaction to loads, which are essential for the further optimization and enhancement of the tooling system’s flexibility. At the initial stage of the development phase, SolidWorks, the computer-aided design software, is utilized to visualise the flexible tooling system and improve the tooling connectivity design. Furthermore, the prototype is developed by integrating mechanical and electrical components, such as the Arduino Mega microcontroller, stepper motors, and digital stepper drivers. Automation is achieved by programming the Arduino microcontroller board and controlling the stepper motors’ movement to ensure precise displacement and speed control of the forming tools. The tooling system’s major qualities are its high flexibility, achieved through the implementation of two moveable support cylinders and the possibility of being further upgraded to a closed-loop forming system. The higher level of automation and optimization of the sheet metal bending process can lead to improved processing efficiency and help achieve the desired formed products with higher quality and the required geometric tolerance. It is expected that the development of a flexible tooling system will find widespread application in sheet metal bending processes, resulting in reduced material costs, rapid equipment set-up and higher processing repeatability.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3