Predicting the deep drawing process of TRIP steel grades using multilayer perceptron artificial neural networks

Author:

Sevsek L.,Vilkovsky S.,Majernikova J.,Pepelnjak T.

Abstract

TRIP (Transformation Induced Plasticity) steels belong to the group of advanced high-strength steels. Their main advantage is their excellent strength combined with high ductility, which makes them ideal for deep drawing processes. The forming of TRIP steels in the deep drawing process enables the production of a thin-walled final product with superior mechanical properties. For this reason, this study presents comprehensive research into the deep drawing of cylindrical cups made from TRIP steel. The research focuses on three main aspects of the deep drawing process, namely the sheet metal thinning, the maximum force value and the ear height as a result of the anisotropic material behaviour. Artificial neural networks (ANNs) were built to predict all the mentioned output parameters of the part or the process itself. The ANNs were trained using data obtained from a sufficient number of simulations based on the finite element method (FEM). The ANN models were developed based on variable material properties, including anisotropic parameters, blank holding force, blank diameter, and friction coefficient. A good agreement between simulation, ANN and experimental results is evident.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3