Due date optimization in multi-objective scheduling of flexible job shop production

Author:

Ojstersek R.,Tang M.,Buchmeister B.

Abstract

The manuscript presents the importance of integrating mathematical methods for the determination of due date optimization parameter for maturity optimization in evolutionary computation (EC) methods in multi-objective flexible job shop scheduling problem (FJSSP). The use of mathematical modelling methods of due date optimization with slack (SLK) for low and total work content (TWK) for medium and high dimensional problems was presented with the integration into the multi-objective heuristic Kalman algorithm (MOHKA). The multi-objective optimization results of makespan, machine utilization and due date scheduling with the MOHKA algorithm were compared with two comparative multi-objective algorithms. The high capability and dominance of the EC method results in scheduling jobs for FJSSP production was demonstrated by comparing the optimization results with the results of scheduling according to conventional priority rules. The obtained results of randomly generated datasets proved the high level of job scheduling importance with respect to the interdependence of the optimization parameters. The ability to apply the presented method to the real-world environment was demonstrated by using a real-world manufacturing system dataset applied in Simio simulation and scheduling software. The optimization results prove the importance of the due date optimization parameter in highly dynamic FJSSP when it comes to achieving low numbers of tardy jobs, short job tardiness and potentially lower tardy jobs costs in relation to short makespan of orders with highly utilized production capacities. The main findings prove that multi-objective optimization of FJSSP planning and scheduling, taking into account the optimization parameter due date, is the key to achieving a financially and timely sustainable production system that is competitive in the global market.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3