Verification of intelligent scheduling based on deep reinforcement learning for distributed workshops via discrete event simulation

Author:

Yang S.L.,Wang J.Y.,Xin L.M.,Xu Z.G.

Abstract

Production scheduling, which directly influences the completion time and throughput of workshops, has received extensive research. However, due to the high cost of real-world production verification, most literature did not verify the optimized scheduling scheme in real-world workshops. This paper studied the verification of scheduling schemes and environments, using a discrete event simulation (DES) platform. The aim of this study is to provide an efficient way to verify the correctness of scheduling environments established by programming languages and scheduling results obtained by intelligent algorithms. The system architecture of scheduling verification based on DES is established. The modelling approach via DES is proposed by designing parametric workshop generation, flexible production control, and real-time data processing. The popular distributed permutation flowshop scheduling problem is selected as a case study, where the optimal scheduling scheme obtained by a deep reinforcement learning algorithm is fed into the production simulation model in Plant Simulation software. The experiment results show that the proposed scheduling verification approach can validate the scheduling scheme and environment effectively. The utilization and Gantt charts clearly show the performance of scheduling schemes. This work can help to verify the scheduling schemes and programmed scheduling environment efficiently without costly real-world validation.

Publisher

Production Engineering Institute (PEI), Faculty of Mechanical Engineering

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research,Mechanical Engineering,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3