Development and laboratory production of virus-like immune-stimulating complexes based on saponins and evaluation of their adjuvant potential using mice immunisation with influenza antigens

Author:

Evseenko V. A.1ORCID,Gudymo A. S.1ORCID,Danilchenko N. V.1ORCID,Svyatchenko S. V.1ORCID,Taranov O. S.1ORCID,Ryzhikov A. B.1ORCID

Affiliation:

1. State Research Center of Virology and Biotechnology “Vector”, World-class genomic research center for biological safety and technological independence

Abstract

The COVID-19 pandemic has exacerbated the public’s need for effective vaccines. Consequently, significant financial support has been provided to developers of a number of innovative vaccines, including the vaccines with saponin-based adjuvants. In 2021, the World Health Organisation recommended Mosquirix, the first malaria vaccine, which contains a saponin adjuvant. An anti-covid vaccine by Novavax is in the approval phase. A promising approach to vaccine development is presented by the use of virus-like immune-stimulating complexes (ISCOMs) containing saponins and by the creation of combinations of ISCOMs with antigens. The aim of the study was to develop, produce and characterise virus-like immune-stimulating complexes based on saponins of Quillaja saponaria, as well as similar saponins of Russian-sourced Polemonium caeruleum. Materials and methods: The ISCOM adjuvants, Matrix-BQ and Matrix-BP, were produced using liquid chromatography and examined using electron microscopy. Balb/c mice were immunised intraperitoneally and intramuscularly with ISCOM-antigen preparations. Afterwards, the immunised animals were challenged with the influenza virus strain, A/California/4/2009(H1N1)pdm09, adapted and lethal to mice. The serum samples were examined using haemagglutination inhibition (HI) tests. Results: The authors produced the ISCOMs containing saponins of Quillaja saponaria and Polemonium caeruleum. After one intramuscular injection of either of the ISCOM-antigen preparations with 1 µg of each of A/Brisbane/02/2018 (H1N1) pdm09, A/Kansas/14/2017 (H3N2), and B/Phuket/3073/2013 haemagglutinin antigens (HAs), HI tests detected serum antibody titres to the corresponding antigens of ≥1:40. Two intramuscular injections of the ISCOM-antigen preparation containing 50 ng of each of the HAs and Matrix-BQ resulted in a protective response. In some animals, two intraperitoneal injections of ISCOM-antigen preparations resulted in the maximum antibody titre to the A/Kansas/14/2017 (H3N2) vaccine strain of 1:20,480. Two intramuscular injections of a test preparation containing 5 µg, 1 µg, 200 ng, or 50 ng of each of the HAs and Matrix-BQ or a control preparation containing 5 µg, 1 µg, or 200 ng of each of the HAs (commercially available vaccines) to the mice that were afterwards infected with the lethal influenza strain protected the experimental animals from death. Conclusions: The ISCOM-based preparations had high immunostimulatory activity in the mouse-model study. The presented results indicate the potential of further studies of ISCOM-based preparations in terms of both vaccine and immunotherapeutic development.

Publisher

SCEEMP

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3